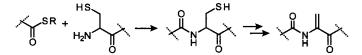
Dehydropeptides from Orthogonal Ligation of Unprotected Peptides


Zhenwei Miao and James P. Tam*

Department of Microbiology and Immunology, Vanderbilt University, A 5119 MCN, Nashville, Tennessee 37323

tamjp@ctrvax.vanderbilt.edu

Received September 20, 2000

ABSTRACT

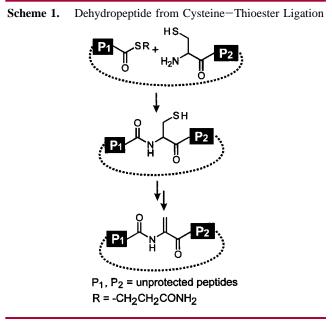
A facile method has been developed to synthesize linear and cyclic dehydropeptides from unprotected peptide precursors. This method exploits an N-terminal Cys for a Cys-thioester ligation to generate an unprotected peptide and as a precursor for conversion to Δ Ala by β -elimination under mild conditions.

Dehydropeptides containing α,β -dehydroamino acids are found in naturally occurring peptide antibiotics, toxins, and enzymes.¹⁻⁴ Moreover, they are versatile intermediates because the dehydro moieties can be readily transformed into various unusual amino acids such as lanthionine, lysinoalanine, and β -heterocyclic alanines through intra- or intermolecular nucleophilic Michael addition.^{1,2,5} Direct stepwise synthesis of dehydropeptides, particularly those containing dehydroalanine (Δ Ala), is limited by poor coupling yields of the dehydroamino acids, the instability of the N-terminal Δ Ala, and their susceptibility to nucleophiles during synthesis.^{6,7} Most syntheses of dehydropeptides are based on the β -elimination of modified Cys, Ser, or Thr from protected peptides.^{8,9} In this Letter, we report a facile method for synthesizing linear and cyclic dehydropeptides from unprotected peptide precursors. This method utilizes a Cys-

(1) Sahl, H.-G.; Jack, R. W.; Bierbaum, G. Eur. J. Biochem. 1995, 230, 827–885.

(3) Schnell, N.; Entian, K.-D.; Schneider, U.; Gotz, F.; Zähner, H.; Kellner, R.; Jung, G. *Nature* **1988**, *333*, 276–278.

(4) (a) Fulton, N. D.; Bollenbacher, K.; Templeton, G. E. *Phytopathology* **1965**, *55*, 49. (b) Mayer, W. L.; Templeton, G. E.; Sigel, C. W.; Jones, R.; Woohead, S. H.; Sauer, C. *Tetrahedron Lett.* **1971**, *25*, 2357.


(5) (a) Barbaste, M.; Rolland-Fulcrand, V.; Roumestant, M.-L.; Viallefont, P.; Martinez, J. *Tetrahedron Lett.* **1998**, *39*, 6287–6290. (b) Ferreira, P. M. T.; Maia, H. L. S.; Monteiro, L. S. *Tetrahedron Lett.* **1999**, *40*, 4099– 4102.

(6) Schmidt, U.; Lieberknecht, A.; Wild, J. Synthesis 1988, 3, 159-172.

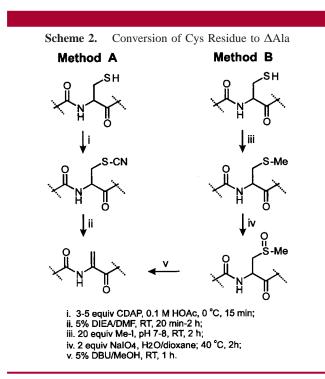
(7) Shin, C.-G.; Yonezawa, Y.; Yamada, T.; Yoshimura, Y. Bull. Chem. Soc. Jpn. 1982, 55, 2147–2152

10.1021/ol006624r CCC: \$19.00 © 2000 American Chemical Society Published on Web 10/24/2000

thioester ligation^{10,11} to generate an unprotected peptide with a Cys at the ligation site as a precursor for conversion to Δ Ala by β -elimination under mild conditions (Scheme 1).

Our method was tested in the syntheses of both linear and cyclic dehydropeptides. The unprotected peptide segments

LETTERS 2000 Vol. 2, No. 23 3711–3713


ORGANIC

⁽²⁾ Friedman, M. Adv. Exp. Med. Biol. 1999, 459, 145-159.

P₁ bearing a C-terminal thioester were directly synthesized from a thiol resin,¹² while segments P₂ carrying an N-terminal Cys were obtained from a benzyl ester resin using Boc/Bzl chemistry. The linear cysteine-containing precursor was obtained through an intermolecular cysteine-thioester ligation of a P₁ segment and a P₂ segment. For cyclic peptides in which P₁ and P₂ are connected as a single peptide segment, the cyclization was effected by intramolecular Cys-thioester ligation. The ligation was generally performed in reducing aqueous conditions buffered at pH 7 to 8 with a low molecular weight thiol such as 2-mercaptoethanesulfonic acid sodium salt as an additive.^{10,11,13} Under these conditions, the ligations proceeded cleanly and quickly in excellent 90-95% yields with examples consisting of one linear (entry 5, Table 1) and four cyclic peptides ranging from 5 to 14 residues (entries 1-4, Table 1).¹⁴

Table 1. Summary of Cysteine—Thioester Ligation							
no.	$P_1 + P_2^a$	product ^b	size (aa)	yield (%)			
1	CAGFY-X	c[CAGFY]	5	90			
2	CSLKLNG-X	c[CSLKLNG]	7	92			
3	CKYSSRGISWSYL-X	c[CKYSSRGISWSYL]	14	91			
4	CKYSSRGICWSYL-X	c[CKYSSRGICWSYL]	14	91			
5	SLKLNG-X + CNSFRY	SLKLNGCNSFRY	12	94			
a X = SCH ₂ CH ₂ CONH ₂ . ^{<i>b</i>} Ligation sites are underlined.							

Two methods were used to convert the newly formed cysteine residue at the ligation site to a dehydroamino acid (Scheme 2). Both methods involved transforming the thiol functionality into a leaving group followed by a β -elimination. In method A, the cyanation of the thiol group with 3–5

equiv of 1-cyano-4-dimethylaminopyridium tetrafluoroborate (CDAP) in a 0.1 M acetic acid solution for 15–20 min at 0 °C transformeded the thiol into -SCN under acidic conditions.¹⁵ The S-cyanated products obtained in >95% yield were stable under conditions for HPLC purification and lyophilization. These products then underwent β -elimination to form an α , β -dehydroalanine in 5–10% DIEA/DMF to afford cyclic and linear Δ Ala-containing peptides in 64–79% yields based on the unprotected peptide precursors (Table 2). This method could be also used for a dehydro-

Table 2. Summary of Conversion of the Cysteine Residue in a

 Precursor to a Dehydroalanine Residue in a Product

no.	precursor ^a	product ^b	method	yield ^c (%)
1	c[CAGFY]	c[∆AGFY]	В	83
2	c[CSLKLNG]	c[∆SLKLNG]	Α	79
3	c[CKYSSRGISWSYL]	$c[\Delta KYSSRGISWSYL]$	Α	76
4	c[CKYSSRGICWSYL]	$c[\Delta KYSSRGI\Delta WSYL]$	Α	64
5	SLKLNGCNSFRY	SLKLNGANSFRY	Α	70
6	KPVSLSYRACGG ^d	KPVSLSYRA∆GG	Α	72

 a C, ligation site. b A, dehydroalanine. c Total yield from precursor to product. d From solid-phase synthesis.

peptide containing two cysteine residues such as cyclo-[Δ KYSSRGI Δ WSYL] (entry 4, Table 2). The β -elimination reaction was best performed in nonaqueous conditions. The starting materials and the Δ Ala-containing products are susceptible to alkaline aqueous conditions, which lead to intramolecular cleavage of the Xaa–Cys or hydrolysis and aminolysis of the Xaa– Δ Ala bond.^{15,16} A similar approach using a 2,4-dinitrophenyl fluoride derived thiol functionality as a leaving group to convert Cys to Δ Ala would also be suitable.

(8) (a) Fields, J. B.; Noble, R. L. Int. J. Pept. Protein Res. 1990, 35, 161–214. (b) Rich, D. H.; Tam, J. P. J. Org. Chem. 1977, 42, 3815–3820.
(c) Li, K. W.; Wu, J.; Xing, N. W.; Somon, J. A. J. Am. Chem. Soc. 1996, 118, 7237–7238. (d) Goodall, K.; Parsons, A. Tetrahedron Lett. 1995, 36, 3259–3260. (e) Cherney, R. J.; Wang, L. J. Org. Chem. 1996, 61, 2544–2546. (f) Miller, M. J. J. Org. Chem. 1980, 45, 3131–3132. (g) Yamada, M.; Miyajima, T.; Horikawa, H. Tetrahedron Lett. 1998, 39, 289–292. (h) Sommerfeld, T. L.; Seebach, D. Helv. Chim. Acta 1993, 76, 1702.

(9) (a) Burrage, S.; Raynham, T.; Williams, G.; Essex, J. W.; Allen, C.; Cardno, M.; Swali, V.; Bradley, M. *Chem. Eur. J.* **2000**, *6* 1455–1466. (b) Burrage, S.; Raynham, T.; Bradley, M. *Tetrahedron Lett.* **1998**, *39*, 2831–2834.

(10) Dawson, P. E.; Muir, T. W.; Clark-Lewis, I.; Kent, S. B. H. Science **1994**, 226, 776–778.

(11) Tam, J. P.; Lu, Y.-A.; Liu, C. F.; Shao, J. Proc. Natl. Acad. Sci. U.S.A. 1995, 92, 12485–12489.

(12) Zhang, L.; Tam, J. P. J. Am. Chem. Soc. 1999, 121, 3311–3320.
 (13) Evans, T. C.; Benner, J. Jr.; Xu, M.-Q. J. Biol. Chem. 1999, 274, 3923–3926

(14) A typical procedure for the synthesis of linear peptide through Cysthioester ligation was accomplished using equivalent P_1 and P_2 segments (4 μ mol of each segment) in 1 mL buffers at pH 7.6 containing 6 M Gua-HCl and 10 equiv of 2-mercaptoethanesulfonic acid sodium salt. The ligation was completed in 3 to 20 h at rt and monitored by HPLC. For synthesis of cyclic peptide, the concentration was diluted to 20 times by the buffers.

(15) Wakselman, M.; Guibé-Jampel, E. J. Chem. Soc., Chem. Commun. 1976, 21–22.

(16) (a) Catsimpoolas, N.; Wood, J. L. J. Biol. Chem. 1966, 241, 1790–1796. (b) Degani, Y.; Neumann, H.; Patchonik, A. Chem. Eur. J. 2000, 6 1455–1466. (c) Stark, G. R. Methods Enzymol. 1977, 47, 129–132.

Method B utilizing sulfoxide for β -elimination has been used to synthesize protected Δ Ala-containing peptides.^{8b,9} The three-step reaction (iii to v), methylation, oxidation, and β -elimination, was performed in organic solvents or organicaqueous mixtures. The major difference between methods A and B is the alkylation condition, the former is under acidic whereas the later is under basic conditions. This method was employed to synthesize a water-insoluble Δ Ala-containing peptide (entry 1, Table 2). The S-methylation in 30% DMF and 70% aqueous buffers at pH 8 with a 20-fold excess of iodomethane at rt for 2 h gave the S-methylated compound in 95% yield. Oxidation of thioether to sulfoxide with 2 to 3 equiv of sodium periodate was achieved in 98% yield in H₂O-dioxane (1:1, v/v) for 4 h at 40 °C. The β -elimination of the sulfoxide with 5% DBU in methanol afforded an 87% yield of the desired cyclic Δ Ala-containing pentapeptide, cyclo[Δ AGFY]. It should be noted that Met- or N-terminal Ser-containing peptides are susceptible to the periodate oxidation in method B.^{8b,18} All the cyclic and linear dehydropeptides from both methods A and B were confirmed by MALDI-TOF MS, HPLC, and UV spectroscopy.

In conclusion, we have developed a facile method to synthesize linear and cyclic Δ Ala-containing peptides from unprotected peptide precursors by Cys-thioester ligation. This procedure has the advantage of using the thiol side chain of an N-terminal Cys for the dual purposes of ligation and conversion to a Δ Ala moiety. It may be further utilized as a Michael acceptor of thiol nucleophiles to further elaborate the side chain.^{9,19}

Acknowledgment. This work was in part supported by U.S. Public Health Service grants NIH GM57145, CA36544, and AI46174.

OL006624R

⁽¹⁷⁾ Nakagawa, S.; Tamakashi, Y.; Hamana, T.; Kawase, M.; Taketomi, S.; Ishibashi, Y.; Nishimura, O.; Fukuda, T. J. Am. Chem. Soc. **1994**, *116*, 5513–5514.

⁽¹⁸⁾ Geoghegan, K. F.; Stroh, J. G. Bioconjugate Chem. 1992, 3, 138–146.

⁽¹⁹⁾ Mayer, J. P.; Zhang, J.; Groeger, S.; Liu, C.-F.; Jarosinski, M. A. J. Pept. Res. **1998**, 51, 432-436.